18 research outputs found

    The adaptive optics lucky imager (AOLI): presentation, commissioning, and AIV innovations

    Full text link
    Here we present the Adaptive Optics Lucky Imager (AOLI), a state-of-the-art instrument which makes use of two well proved techniques, Lucky Imaging (LI) and Adaptive Optics (AO), to deliver diffraction limited imaging at visible wavelengths, 20 mas, from ground-based telescopes. Thanks to its revolutionary TP3-WFS, AOLI shall have the capability of using faint reference stars. In the extremely-big telescopes era, the combination of techniques and the development of new WFS systems seems the clue key for success. We give details of the integration and verification phases explaining the defiance that we have faced and the innovative and versatile solutions for each of its subsystems that we have developed, providing also very fresh results after its first fully-working observing run at the William Herschel Telescope (WHT).Comment: 6 pages, 6 figures, conference. arXiv admin note: text overlap with arXiv:1703.09354, arXiv:1608.0480

    Spectroscopy of the Lens Galaxy of Q0957+561A,B. Implications of a possible central massive dark object

    Get PDF
    We present new long-slit William Herschel Telescope spectroscopic observations of the lens galaxy G1 associated with the double-imaged QSO 0957+561A,B. The obtained central stellar velocity dispersion, sigma_l = 310 +/- 20 km/s, is in reasonable agreement with other measurements of this dynamical parameter. Using all updated measurements of the stellar velocity dispersion in the internal region of the galaxy (at angular separations < 1".5) and a simple isotropic model, we discuss the mass of a possible central massive dark object. It is found that the data of Falco et al. (1997) suggest the existence of an extremely massive object of (0.5-2.1) x 10E10/h M_\odot (80% confidence level), whereas the inclusion of very recent data (Tonry & Franx 1998, and this paper) substantially changes the results: the compact central mass must be \le 6 x10E9/h M_\odot at the 90% confidence level. We note that, taking into account all the available dynamical data, a compact nucleus with a mass of 10E9/h M_\odot (best fit) cannot be ruled out.Comment: 20 pages, 10 figures ApJ, in pres

    Commissioning and First Observations with Wide FastCam at the Telescopio Carlos S\'anchez

    Get PDF
    The FastCam instrument platform, jointly developed by the IAC and the UPCT, allows, in real-time, acquisition, selection and storage of images with a resolution that reaches the diffraction limit of medium-sized telescopes. FastCam incorporates a specially designed software package to analyse series of tens of thousands of images in parallel with the data acquisition at the telescope. Wide FastCam is a new instrument that, using the same software for data acquisition, does not look for lucky imaging but fast observations in a much larger field of view. Here we describe the commissioning process and first observations with Wide FastCam at the Telescopio Carlos S\'anchez (TCS) in the Observatorio del Teide.Comment: 7 pages, 8 figures, Proc. SPIE. 9908, Ground-based and Airborne Instrumentation for Astronomy VI, 99082O. (August 09, 2016

    High-resolution optical imaging of the core of the globular cluster M15 with FastCam

    Get PDF
    We present high-resolution I-band imaging of the core of the globular cluster M15 obtained at the 2.5 m Nordic Optical Telescope with FastCam, a low readout noise L3CCD based instrument. Short exposure times (30 ms) were used to record 200000 images (512 x 512 pixels each) over a period of 2 hours 43 min. The lucky imaging technique was then applied to generate a final image of the cluster centre with FWHM ~ 0".1 and 13" x 13" FoV. We obtained a catalogue of objects in this region with a limiting magnitude of I=19.5. I-band photometry and astrometry are reported for 1181 stars. This is the deepest I-band observation of the M15 core at this spatial resolution. Simulations show that crowding is limiting the completeness of the catalogue. At shorter wavelengths, a similar number of objects has been reported using HST/WFPC observations of the same field. The cross-match with the available HST catalogues allowed us to produce colour-magnitude diagrams where we identify new Blue Straggler star candidates and previously known stars of this class.Comment: 11 pages, 15 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    An instrumental puzzle: the modular integration of AOLI

    Full text link
    The Adaptive Optics Lucky Imager, AOLI, is an instrument developed to deliver the highest spatial resolution ever obtained in the visible, 20 mas, from ground-based telescopes. In AOLI a new philosophy of instrumental prototyping has been applied, based on the modularization of the subsystems. This modular concept offers maximum flexibility regarding the instrument, telescope or the addition of future developments.Comment: 10 pages, 8 figures, Proc. SPIE 9908, Ground-based and Airborne Instrumentation for Astronomy VI, 99082Z (August 9, 2016

    Laboratory and telescope demonstration of the TP3-WFS for the adaptive optics segment of AOLI

    Get PDF
    AOLI (Adaptive Optics Lucky Imager) is a state-of-art instrument that combines adaptive optics (AO) and lucky imaging (LI) with the objective of obtaining diffraction limited images in visible wavelength at mid- and big-size ground-based telescopes. The key innovation of AOLI is the development and use of the new TP3-WFS (Two Pupil Plane PositionsWavefront Sensor). The TP3-WFS, working in visible band, represents an advance over classical wavefront sensors such as the Shack-Hartmann WFS (SH-WFS) because it can theoretically use fainter natural reference stars, which would ultimately provide better sky coverages to AO instruments using this newer sensor. This paper describes the software, algorithms and procedures that enabled AOLI to become the first astronomical instrument performing real-time adaptive optics corrections in a telescope with this new type of WFS, including the first control-related results at the William Herschel Telescope (WHT)This work was supported by the Spanish Ministry of Economy under the projects AYA2011-29024, ESP2014-56869-C2-2-P, ESP2015-69020-C2-2-R and DPI2015-66458-C2-2-R, by project 15345/PI/10 from the Fundación Séneca, by the Spanish Ministry of Education under the grant FPU12/05573, by project ST/K002368/1 from the Science and Technology Facilities Council and by ERDF funds from the European Commission. The results presented in this paper are based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. Special thanks go to Lara Monteagudo and Marcos Pellejero for their timely contributions

    AOLI: Near-diffraction limited imaging in the visible on large ground -based telescopes

    Get PDF
    The combination of Lucky Imaging with a low order adaptive optics system was demonstrated very successfully on the Palomar 5m telescope nearly 10 years ago. It is still the only system to give such high-resolution images in the visible or near infrared on ground-based telescope of faint astronomical targets. The development of AOLI for deployment initially on the WHT 4.2 m telescope in La Palma, Canary Islands, will be described in this paper. In particular, we will look at the design and status of our low order curvature wavefront sensor which has been somewhat simplified to make it more efficient, ensuring coverage over much of the sky with natural guide stars as reference object. AOLI uses optically butted electron multiplying CCDs to give an imaging array of 2000 x 2000 pixels.Science and Technology Facilities CouncilThis is the author accepted manuscript. The final version is available from SPIE via http://dx.doi.org/10.1117/12.223090
    corecore